If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-64X-400=0
a = 1; b = -64; c = -400;
Δ = b2-4ac
Δ = -642-4·1·(-400)
Δ = 5696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5696}=\sqrt{64*89}=\sqrt{64}*\sqrt{89}=8\sqrt{89}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{89}}{2*1}=\frac{64-8\sqrt{89}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{89}}{2*1}=\frac{64+8\sqrt{89}}{2} $
| (2y-6)(y^2-3y-18)=0 | | X+2/x-2=73 | | 6(10-4x)=45-5(4x+1) | | 2(x+3)+2(x-3)=54 | | 9x+15+6x=4 | | 5x^2+16x+1=0 | | 5(c+3)=4(2c-5) | | 37=-5-11b | | (2x+1)(x+1)=60 | | 0.5d=0.1d= | | 4-8x=4x | | 72=-6p-(-3) | | b+18=20 | | 5(p+8=75) | | 0=16(-x^2+4+5) | | 80=-16x^2+64x+80 | | -80=16x^2+64x+80 | | x=-16*1.25^2+64*1.25+80 | | x=-16*0^2+64*0+80 | | -8=t2-8t+7 | | -8=t^2-8t+7 | | x=-1680^2+64*0+80 | | 7d+5=40 | | 2.8=-10t+7.2 | | (x/2)+7=24 | | x+5/3=17/2 | | 10x+11-8=10x+3 | | 4s+5=41 | | -5x-4.8=6.6 | | -5x-4.8=6,7 | | 0.04(x-180)=200 | | 0.125x=0.125x+0.025 |